If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+10q-37=0
a = 1; b = 10; c = -37;
Δ = b2-4ac
Δ = 102-4·1·(-37)
Δ = 248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{248}=\sqrt{4*62}=\sqrt{4}*\sqrt{62}=2\sqrt{62}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{62}}{2*1}=\frac{-10-2\sqrt{62}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{62}}{2*1}=\frac{-10+2\sqrt{62}}{2} $
| 0.7x+1.89=0.7 | | -w/7=3 | | 13=x-(-24) | | 4+2.2h=-3.27 | | -n–24=5–n | | 10y=9y | | 2x+21=-21 | | 3x+x(x+2)=10 | | x+(-12)=37 | | 30+45s=18 | | .6x+31=33 | | -2(j–3)=-2j+6 | | 13x-38=14 | | (t+4)2=24 | | 5(6-9s)=18 | | (3x+12)+5=180 | | 5^2x-5^x-600=0 | | 17x+31=5x-7 | | 7a^2-2a-24=0 | | 5^3x-5^x-600=0 | | -8w+3(w+2)=-39 | | .75x-27=27 | | 19)-10=10(k-9) | | 1/3x+7=11 | | 12x^2+12x-360=0 | | 3x+12+50=180 | | 9x-5=6x=+7 | | 4+y+y=18 | | 4(x+2.06)=3x | | 1/3x+2/9=5/18 | | 4x-32-2=-38 | | 25-10.81-0.38x=10 |